skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gee, Marissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Not AvailablePiecewise-Deterministic Markov processes (PDMPs) are often used to model abrupt changes in the global environment or capabilities of a controlled system. This is typically done by considering a set of “operating modes” (each with its own system dynamics and performance metrics) and assuming that the mode can switch stochastically, while the system state evolves. Such models have a broad range of applications in engineering, economics, manufacturing, robotics, and biological sciences. Here, we introduce and analyze an “occasionally observed” version of mode-switching PDMPs. We show how such systems can be controlled optimally if the planner is not alerted to mode switches as they occur but may instead have access to infrequent mode observations. We first develop a general framework for handling this through dynamic programming on a higher dimensional mode-belief space. While quite general, this method is rarely practical due to the curse of dimensionality. We then discuss assumptions that allow for solving the same problem much more efficiently,with the computational costs growing linearly (rather than exponentially) with the number of modes. We use this approach to derive Hamilton-Jacobi-Bellman (HJB) PDEs and quasi-variational inequalities encoding the optimal behavior for a variety of planning horizons (fixed, infinite, indefinite, and random) and mode-observation schemes (at fixed times or on demand). We discuss the computational challenges associated with each version and illustrate the resulting methods on test problems from surveillance-evading path planning. We also include an example based on robotic navigation: a Mars rover that minimizes the expected time to target while accounting for the possibility of unobserved/incremental damages and dynamics-altering breakdowns. 
    more » « less
    Free, publicly-accessible full text available September 10, 2026